百度智能云全功能AI开发平台BML自定义作业建模 - 自动搜索作业代码示例(Sklearn 0.23.2)
文档简介:
基于Sklearn 0.23.2框架的结构化数据的多分类问题,训练数据集sklearn_train_data.zip点击这里下载。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。另外该框架支持发布保存模型为pickle和joblib格式,并且在发布至模型仓库时需要选择相应的模型文件。
Sklearn 0.23.2代码规范
基于Sklearn 0.23.2框架的结构化数据的多分类问题,训练数据集sklearn_train_data.zip点击这里下载。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。另外该框架支持发布保存模型为pickle和joblib格式,并且在发布至模型仓库时需要选择相应的模型文件。
sklearn0.23.2_autosearch.py示例代码
# -*- coding:utf-8 -*- """ sklearn train demo """ import os import argparse import
time from sklearn.model_selection import train_test_split from sklearn.metrics import
f1_score from sklearn import svm import pandas as pd import numpy as np from rudder_
autosearch.sdk.amaas_tools import AMaasTools def parse_arg(): """parse arguments"""
parser = argparse.ArgumentParser(description='Sklearn iris Example') parser.add_argument
('--train_dir', type=str, default='./train_data', help='input data dir for training
(default: ./train_data)') parser.add_argument('--test_dir', type=str, default='./test_
data', help='input data dir for test (default: ./test_data)') parser.add_argument
('--output_dir', type=str, default='./output', help='output dir for auto_search job
(default: ./output)') parser.add_argument('--job_id', type=str, default="job-1234",
help='auto_search job id') parser.add_argument('--trial_id', type=str, default="0-0",
help='auto_search id of a single trial') parser.add_argument('--metric', type=str,
default="f1_score", help='evaluation metric of the model') parser.add_argument
('--data_sampling_scale', type=float, default=1.0, help='sampling ratio of the
dataset for auto_search (default: 1.0)') parser.add_argument('--kernel', type=str,
default='linear', help='kernel function (default: "linear")') parser.add_argument
('--C', type=float, default=1, help='penalty term (default: 1)') parser.add_argument
('--gamma', type=float, default=0.5, help='parameter of the kernel (default: 0.5)')
args = parser.parse_args() args.output_dir = os.path.join(args.output_dir, args.job_id,
args.trial_id) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir)
print("job_id: {}, trial_id: {}".format(args.job_id, args.trial_id)) return args
def load_data(train_dir, data_sampling_scale): """ load data """ # 共150条数据,
训练120条,测试30条,进行2,8分进行模型训练 # 每条数据类型为 x{nbarray} [6.4, 3.1, 5.5, 1.8]
# 上传的数据储存在./train_data和./test_data中 inputdata = pd.read_csv(train_dir + "/iris.csv")
target = inputdata["Species"] inputdata = inputdata.drop(columns=["Species"]) # 切分,测试训练2,8分
x_train, x_test, y_train, y_test = train_test_split(inputdata, target, test_size=0.2, random_state=0)
train_data = np.concatenate([x_train, y_train.ravel().reshape([-1, 1])], axis=1) np.random.seed(0)
np.random.shuffle(train_data) train_data = train_data[0:int(data_sampling_scale * len(train_data))]
x_train, y_train = train_data[:, 0:-1], train_data[:, -1] return (x_train, x_test), (y_train, y_test)
def save_model(model, output_dir): """ save model with pickle format """ import pickle with open
(output_dir + '/clf.pickle', 'wb') as f: pickle.dump(model, f) def save_model_joblib(model, output_dir)
: """ save model with joblib format """ try: import joblib except: from sklearn.externals import joblib joblib.dump(model, output_dir + '/clf.pkl') def evaluate(model, x_test, y_test): """evaluate"""
# 多分类f1_score指标 predict = model.predict(x_test) f1 = f1_score(y_test, predict, average="micro")
print("f1_score: %f" % f1) return f1 def report_final(args, metric): """report_final_result"""
# 结果上报sdk amaas_tools = AMaasTools(args.job_id, args.trial_id) metric_dict = {args.metric: metric}
for i in range(3): flag, ret_msg = amaas_tools.report_final_result(metric=metric_dict, export_model
_path=args.output_dir, checkpoint_path="") print("End Report, metric:{}, ret_msg:{}"
.format(metric, ret_msg)) if flag: break time.sleep(1) assert flag, "Report final result
to manager failed! Please check whether manager'address or manager'status " \ "is ok!
" def main(): """ main """ # 获取参数 args = parse_arg() # 加载数据集 (x_train, x_test),
(y_train, y_test) = load_data(args.train_dir, args.data_sampling_scale) # 模型定义 model =
svm.SVC(C=args.C, kernel=args.kernel, gamma=args.gamma) # 模型训练 model.fit(x_train, y_train)
# 模型保存 save_model(model, args.output_dir) # 模型评估 f1 = evaluate(model, x_test, y_test)
# 上报结果 report_final(args, metric=f1) if __name__ == '__main__': main()
示例代码对应的yaml配置如下,请保持格式一致
random_search_demo.yml示例内容
#搜索算法参数
search_strategy:
algo: RANDOM_SEARCH #搜索策略:随机搜索
#单次训练时数据的采样比例,单位%
data_sampling_scale: 100 #|(0,100] int类型
#最大搜索次数
max_trial_num: 10 # |>0 int类型
#评价指标参数
metrics:
name: f1_score #评价指标 | 任意字符串 str类型
goal: MAXIMIZE #最大值/最小值 | str类型 MAXIMIZE or MINIMIZE 必须为这两个之一(也即支持大写)
expected_value: 100 #早停标准值,评价指标超过该值则结束整个超参搜索,单位% |无限制 int类型
#搜索参数空间
search_space:
kernel: #核函数
htype: choice
value: ["linear", "rbf"]
C: #惩罚项
htype: loguniform
value: [0.001, 1000]
gamma: #核函数参数
htype: loguniform
value: [0.0001, 1]