百度智能云全功能AI开发平台BML自定义作业建模 - 自动搜索作业代码示例(XGBoost 1.3.1)
文档简介:
基于XGBoost 1.3.1框架的结构化数据的回归问题。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。另外该框架支持发布保存模型为pickle和joblib格式,并且在发布至模型仓库时需要选择相应的模型文件。
XGBoost 1.3.1代码规范
基于XGBoost 1.3.1框架的结构化数据的回归问题。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。另外该框架支持发布保存模型为pickle和joblib格式,并且在发布至模型仓库时需要选择相应的模型文件。
xgboost1.3.1_autosearch.py示例代码
# -*- coding:utf-8 -*- """ xgboost train demo """ import xgboost as xgb from sklearn.model_selection
import train_test_split from sklearn import datasets from sklearn.metrics import mean_squared_error
import numpy as np import os import time import argparse from rudder_autosearch.sdk.amaas_tools import
AMaasTools def parse_arg(): """parse arguments""" parser = argparse.ArgumentParser
(description='xgboost boston Example') parser.add_argument('--train_dir', type=str,
default='./train_data', help='input data dir for training (default: ./train_data)')
parser.add_argument('--test_dir', type=str, default='./test_data', help='input data dir
for test (default: ./test_data)') parser.add_argument('--output_dir', type=str, default='
./output', help='output dir for auto_search job (default: ./output)') parser.add_argument(
'--job_id', type=str, default="job-1234", help='auto_search job id (default: "job-1234")')
parser.add_argument('--trial_id', type=str, default="0-0", help='auto_search id of a single
trial (default: "0-0")') parser.add_argument('--metric', type=str, default="mse", help='evaluation
metric of the model') parser.add_argument('--data_sampling_scale', type=float, default=1.0, help=
'sampling ratio of the dataset for auto_search (default: 1.0)') parser.add_argument('--max_depth',
type=int, default=6, help='maximum depth of the tree (default: 6)') parser.add_argument('--gamma',
type=float, default=0.1, help='minimum loss reduction required for further splitting (default: 0.1)')
parser.add_argument('--eta', type=float, default=0.1, help='learning rate (default: 0.1)')
parser.add_argument('--num_round', type=int, default=10, help='number of trees (default: 10)')
args = parser.parse_args() args.output_dir = os.path.join(args.output_dir, args.job_id, args.trial_id)
if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) print("job_id: {}, trial_id:
{}".format(args.job_id, args.trial_id)) return args def load_data(data_sampling_scale): "
"" load data """ boston = datasets.load_boston() X, Y = boston.data, boston.target
# 切分,测试训练2,8分 x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,
random_state=0) train_data = np.concatenate([x_train, y_train.reshape([-1, 1])], axis=1) np.random.seed(0)
np.random.shuffle(train_data) train_data = train_data[0:int(data_sampling_scale * len(train_data))] x_train,
y_train = train_data[:, 0:-1], train_data[:, -1] return (x_train, x_test), (y_train, y_test) def save_model
(model, output_dir): """ save model with pickle format """ import pickle with open(output_dir
+ '/clf.pickle', 'wb') as f: pickle.dump(model, f) def save_model_joblib(model, output_dir):
""" save model with joblib format """ import joblib joblib.dump(model, output_dir + '/clf.pkl') def evaluate(model, x_test, y_test): "
""evaluate""" # 回归mean_squared_error指标 deval = xgb.DMatrix(x_test) predict = model.predict(deval)
mse = mean_squared_error(y_test, predict) print("mean_squared_error: %f" % mse) return mse def report_
final(args, metric): """report_final_result""" # 结果上报sdk amaas_tools = AMaasTools(args.job_id,
args.trial_id) metric_dict = {args.metric: metric} for i in range(3): flag, ret_msg = amaas_tools.report
_final_result(metric=metric_dict, export_model_path=args.output_dir, checkpoint_path="") print("End
Report, metric:{}, ret_msg:{}".format(metric, ret_msg)) if flag: break time.sleep(1) assert flag,
"Report final result to manager failed! Please check whether manager'address or manager'status "
\ "is ok! " def main(): """ main """ # 获取参数 args = parse_arg() # 加载数据集 (x_train, x_test),
(y_train, y_test) = load_data(args.data_sampling_scale) dtrain = xgb.DMatrix(x_train, label=y_train)
# 模型参数定义 param = {"gamma": args.gamma, 'max_depth': args.max_depth, 'eta': args.eta, 'objective'
: 'reg:squarederror'} # 模型训练 model = xgb.train(param, dtrain, args.num_round)
# 模型保存 save_model_joblib(model, args.output_dir) # 模型评估 mse = evaluate(model, x_test, y_test)
# 上报结果 report_final(args, metric=mse) if __name__ == '__main__': main()
示例代码对应的yaml配置如下,请保持格式一致
cmaes_search_demo.yml示例内容
#搜索算法参数
search_strategy:
algo: CMAES_SEARCH #搜索策略:进化-cmaes算法
params:
population_num: 8 #种群个体数量 | [1,10] int类型
round: 10 #迭代轮数 |[5,50] int类型
step_size: 1.0 # 学习步长 |(0,10] float类型
#单次训练时数据的采样比例,单位%
data_sampling_scale: 100 #|(0,100] int类型
#评价指标参数
metrics:
name: mse #评价指标 | 任意字符串 str类型
goal: MINIMIZE #最大值/最小值 | str类型 MAXIMIZE or MINIMIZE 必须为这两个之一(也即支持大写)
expected_value: 10 #早停标准值,评价指标超过该值则结束整个超参搜索,单位% |无限制 int类型
#搜索参数空间
search_space:
max_depth:
htype: randint
value: [3, 10]
num_round:
htype: randint
value: [1, 8]
gamma:
htype: uniform
value: [0.1, 1]
eta:
htype: loguniform
value: [0.01, 1]