上云无忧 > 文档中心 > 百度智能云飞桨 - NGC 飞桨容器安装指南
飞桨PaddlePaddle开源深度学习平台
百度智能云飞桨 - NGC 飞桨容器安装指南

文档简介:
整体介绍: NGC 飞桨容器针对 NVIDIA GPU 加速进行了优化,并包含一组经过验证的库,可启用和优化 NVIDIA GPU 性能。此容器还可能包含对 PaddlePaddle 源代码的修改,以最大限度地提高性能和兼容性。此容器还包含用于加速 ETL (DALI, RAPIDS),、训练(cuDNN, NCCL)和推理(TensorRT)工作负载的软件。
*此产品及展示信息均由百度智能云官方提供。免费试用 咨询热线:400-826-7010,为您提供专业的售前咨询,让您快速了解云产品,助您轻松上云! 微信咨询
  免费试用、价格特惠

整体介绍

NGC 飞桨容器针对 NVIDIA GPU 加速进行了优化,并包含一组经过验证的库,可启用和优化 NVIDIA GPU 性能。此容器还可能包含对 PaddlePaddle 源代码的修改,以最大限度地提高性能和兼容性。此容器还包含用于加速 ETL (DALI, RAPIDS),、训练(cuDNN, NCCL)和推理(TensorRT)工作负载的软件。

环境准备

使用 NGC 飞桨容器需要主机系统安装以下内容:

  • Docker 引擎

  • NVIDIA GPU 驱动程序

  • NVIDIA 容器工具包

有关支持的版本,请参阅 NVIDIA 框架容器支持矩阵 和 NVIDIA 容器工具包文档。

不需要其他安装、编译或依赖管理。 无需安装 NVIDIA CUDA Toolkit。

安装步骤

要运行容器,请按照 NVIDIA Containers For Deep Learning Frameworks User’s Guide 中 Running A Container 一章中的说明发出适当的命令,并指定注册表、存储库和标签。 有关使用 NGC 的更多信息,请参阅 NGC 容器用户指南。 如果您有 Docker 19.03 或更高版本,启动容器的典型命令是:

docker run --gpus all --shm-size=1g --ulimit memlock=-1 -it --rm nvcr.io/nvidia/paddlepaddle:22.07-py3 

如果您有 Docker 19.02 或更早版本,启动容器的典型命令是:

nvidia-docker run --shm-size=1g --ulimit memlock=-1 -it --rm nvcr.io/nvidia/paddlepaddle:22.07-py3 

其中: * 22.07 是容器版本。 PaddlePaddle 通过将其作为 Python 模块导入来运行:

 $ python -c 'import paddle; paddle.utils.run_check()'
Running verify PaddlePaddle program ...
W0516 06:36:54.208734   442 device_context.cc:451] Please NOTE: device: 0, GPU Compute Ca
pability: 8.0, Driver API Version: 11.7, Runtime API Version: 11.7
W0516 06:36:54.212574   442 device_context.cc:469] device: 0, cuDNN Version: 8.4.
PaddlePaddle works well on 1 GPU.
W0516 06:37:12.706600   442 fuse_all_reduce_op_pass.cc:76] Find all_reduce operators: 
2. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 2.
PaddlePaddle works well on 8 GPUs.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.

有关入门和自定义 PaddlePaddle 映像的信息,请参阅容器内的 /workspace/README.md。

您可能希望从容器外部的位置提取数据和模型描述以供 PaddlePaddle 使用。 为此,最简单的方法是将一个或多个主机目录挂载为 Docker 绑定挂载。 例如:

docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/paddlepaddle:22.07-py3 

注意:为了在队列之间共享数据,NCCL 可能需要共享系统内存用于 IPC 和固定(页面锁定)系统内存资源。 操作系统对这些资源的限制可能需要相应增加。 有关详细信息,请参阅系统文档。 特别是,Docker 容器默认使用有限的共享和固定内存资源。 在容器内使用 NCCL 时,建议您通过发出以下命令来增加这些资源:

--shm-size=1g --ulimit memlock=-1 

在 docker run 命令中。

NGC 容器介绍

有关内容的完整列表,请参阅 NGC 飞桨容器发行说明。 此容器映像包含 NVIDIA 版 PaddlePaddle 的完整源代码,位于 /opt/paddle/paddle。它是作为系统 Python 模块预构建和安装的。 NVIDIA PaddlePaddle 容器针对与 NVIDIA GPU 一起使用进行了优化,并包含以下用于 GPU 加速的软件:

  • CUDA

  • cuBLAS

  • NVIDIA cuDNN

  • NVIDIA NCCL (optimized for NVLink )

  • NVIDIA Data Loading Library (DALI)

  • TensorRT

  • PaddlePaddle with TensorRT (Paddle-TRT)

此容器中的软件堆栈已经过兼容性验证,不需要最终用户进行任何额外的安装或编译。此容器可以帮助您从端到端加速深度学习工作流程。

NGC 飞桨容器软件许可协议

当您下载或使用 NGC 飞桨容器时,即表示您已经同意并接受此 最终用户许可协议 的条款及其对应约束。

相似文档
  • 飞桨支持的 Nvidia GPU 架构及安装方式、编译依赖表、编译选项表、安装包列表、多版本 whl 包列表-Release、多版本 whl 包列表-develop、使用 Docker 启动 PaddlePaddle Book 教程、使用 Docker 执行 GPU 训练。
  • 内容审核是中国电信自主研发的具有文本、图片等多媒体风险识别与拦截的审核能力,对网络中产生的文本、图片内容进行涉黄、涉政、涉暴恐等敏感内容进行识别,帮助用户控制业务的违规风险,并大幅降低人工审核的人力成本。
  • 本节介绍了内容审核的最新动态情况。 2023/08/08,内容审核最佳实践上线。 2023/05/09,内容审核补充计费类、购买类常见问题补充。 2023/03/30,内容审核(经典版)新能力上线。
  • 本节介绍了内容审核的产品优势。 识别准确率高: 使用深度学习与机器学习相结合的方式,基于大规模和多主题数据的模型训练,具备较高的识别率和较低的误判率。
  • 本节介绍了4项内容审核能力。 图片涉黄: 对用户的图片中涉及色情、性感的内容进行检测识别,返回图片是否存在色情内容的结果。 图片涉暴恐识别: 对用户的图片中涉及暴力、血腥、恐怖、强制等内容进行检测识别,返回图片是否存在暴恐内容的结果。
官方微信
联系客服
400-826-7010
7x24小时客服热线
分享
  • QQ好友
  • QQ空间
  • 微信
  • 微博
返回顶部