文档简介:
简介
本文档介绍Windows GPU SDK的使用方法。
- 网络类型支持:图像分类,物体检测,图像分割、声音分类
-
硬件支持:
- NVIDIA GPU (普通版,加速版)
-
操作系统支持
- 64位 Windows 7 及以上
- 64位Windows Server 2012及以上
-
环境依赖(必须安装以下版本)
- .NET Framework 4.5
- Visual C++ Redistributable Packages for Visual Studio 2013
- Visual C++ Redistributable Packages for Visual Studio 2015
-
GPU非目标跟踪基础版(EasyEdge-win-x86-nvidia-gpu)依赖(必须安装以下版本)
- CUDA 9.0.x + cuDNN 7.6.x 或者 CUDA 10.0.x + cuDNN 7.6.x 或者 CUDA 11.0.x + cuDNN 8.0.x
-
GPU目标跟踪基础版(EasyEdge-win-x86-nvidia-gpu-torch)依赖(必须安装以下版本)
- CUDA 11.0.x + cuDNN 8.0.x
-
GPU加速版(EasyEdge-win-x86-nvidia-gpu-tensorrt)依赖(必须安装以下版本)
- CUDA 9.0.x + cuDNN 7.6.x 或者 CUDA 10.0.x + cuDNN 7.6.x
- TensorRT 7.x 必须和CUDA版本对应
-
GPU加速版(EasyEdge-win-x86-nvidia-gpu-paddletrt)依赖(必须安装以下版本)
- CUDA 11.0.x + cuDNN 8.0.x
- TensorRT 7.1.3.4 必须和CUDA版本对应
-
协议
- HTTP
- 更详细的环境说明可参考SDK内的README.md
Release Notes
时间 | 版本 | 说明 |
---|---|---|
2022-05-27 | 1.5.1 | 新增支持BML Cloud小目标检测模型 |
2022-05-18 | 1.5.0 | 修复各别机器下程序崩溃的问题 |
2022-04-25 | 1.4.1 | EasyDL, BML升级支持paddle2模型 |
2022-03-25 | 1.4.0 | 优化模型算法 |
2021-12-22 | 1.3.5 | GPU基础版推理引擎优化升级;GPU加速版支持自定义模型文件缓存路径;demo程序优化环境依赖检测 |
2021-10-20 | 1.3.4 | 修复已知问题 |
2021-08-19 | 1.3.2 | 新增支持EasyDL小目标检测,新增DEMO二进制文件 |
2021-06-29 | 1.3.1 | 预测引擎升级 |
2021-05-13 | 1.3.0 | 模型发布新增多种加速方案选择;目标追踪支持x86平台的GPU及加速版;展示已发布模型性能评估报告 |
2021-04-08 | 1.2.3 | 支持BML平台模型仓库本地上传模型 |
2021-03-09 | 1.2.2 | 修复已知问题 |
2021-01-27 | 1.2.1 | 新增模型支持;性能优化;问题修复 |
2020-12-18 | 1.2.0 | 推理引擎升级 |
2020-11-26 | 1.1.20 | 新增一些模型的加速版支持 |
2020-10-29 | 1.1.19 | 修复已知问题 |
2020-09-17 | 1.1.18 | 支持更多模型 |
2020.08.11 | 1.1.17 | 支持专业版更多模型 |
2020.06.23 | 1.1.16 | 支持专业版更多模型 |
2020.05.15 | 1.1.15 | 更新加速版tensorrt版本,支持高精度检测 |
2020.03.13 | 1.1.14 | 支持声音分类 |
2020.02.23 | 1.1.13 | 支持多阶段模型 |
2020.01.16 | 1.1.12 | 预测默认使用推荐阈值 |
2019.12.26 | 1.1.11 | 支持物体检测高精度算法的CPU加速版,EasyDL 专业版支持 SDK 加速版 |
2019.12.04 | 1.1.10 | 支持图像分割 |
2019.10.21 | 1.1.9 | 支持 EasyDL 专业版 |
2019.08.29 | 1.1.8 | CPU 加速版支持 |
2019.07.19 | 1.1.7 | 提供模型更新工具 |
2019.05.16 | 1.1.3 | NVIDIA GPU 支持 |
2019.03.15 | 1.1.0 | 架构与功能完善 |
2019.02.28 | 1.0.6 | 引擎功能完善 |
2019.02.13 | 1.0.5 | paddlepaddle 支持 |
2018.11.30 | 1.0.0 | 第一版! |
快速开始
1. 安装依赖
安装.NET Framework4.5
https://www.microsoft.com/zh-CN/download/details.aspx?id=42642
Visual C++ Redistributable Packages for Visual Studio 2013
https://www.microsoft.com/zh-cn/download/details.aspx?id=40784
Visual C++ Redistributable Packages for Visual Studio 2015
https://www.microsoft.com/zh-cn/download/details.aspx?id=48145
如果使用GPU版SDK,请安装CUDA + cuDNN
https://developer.nvidia.com/cuda
https://developer.nvidia.com/cudnn
如果使用GPU版加速版SDK(EasyEdge-win-x86-nvidia-gpu-tensorrt),请安装TensorRT
https://developer.nvidia.com/tensorrt
根据cuda版本下载:
cuda9.0: TensorRT-7.0.0.11.Windows10.x86_64.cuda-9.0.cudnn7.6
cuda10.0: TensorRT-7.0.0.11.Windows10.x86_64.cuda-10.0.cudnn7.6
cuda10.2: 不支持,请降级为cuda10.0
下载后把lib目录下的所有dll,拷贝到SDK的dll目录下
如果使用GPU版加速版SDK(EasyEdge-win-x86-nvidia-gpu-paddletrt),请安装TensorRT
https://developer.nvidia.com/tensorrt
根据cuda版本下载:
cuda11.0: TensorRT-7.1.3.4.Windows10.x86_64.cuda-11.0.cudnn8.0
下载后把lib目录下的所有dll,拷贝到SDK的dll目录下
如果使用声音分类,请安装以下依赖
· 安装six 打开cmd,进入sdk包所在目录。执行EasyEdge-win-mXXXX-x86-nvidia-gpu\python37\python.exe -m pip install -U
six -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com · 安装librosa 打开cmd,进入sdk包所在目录。执行EasyEdge-win-mXXXX-x86-nvidia-gpu\python37\python.exe -m
pip install -U librosa -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
注意事项
- 安装目录不能包含中文
- Windows Server 请自行开启,选择“我的电脑”——“属性”——“管理”——”添加角色和功能“——勾选”桌面体验“,点击安装,安装之后重启即可。
2. 运行离线SDK
解压下载好的SDK,SDK默认使用cuda9版本,如果需要cuda10请运行EasyEdge CUDA10.0.bat切换到cuda10版本,之后打开EasyEdge.exe,输入Serial Num 点击"启动服务",等待数秒即可启动成功,本地服务默认运行在
http://127.0.0.1:24401/
其他任何语言只需通过HTTP调用即可。
Demo示例(以图像服务为例)
服务运行成功,此时可直接在浏览器中输入http://127.0.0.1:24401,在h5中测试模型效果。
使用说明
图像服务调用说明
Python 使用示例代码如下
import requests with open('./1.jpg', 'rb') as f: img = f.read() ## params 为GET参数 data 为POST
Body result = requests.post('http://127.0.0.1:24401/', params={'threshold': 0.1}, data=img).json()
C# 使用示例代码如下
FileStream fs = new FileStream("./img.jpg", FileMode.Open); BinaryReader br
= new BinaryReader(fs); byte[] img = br.ReadBytes((int)fs.Length); br.Close(); fs.Close();
string url = "http://127.0.0.1:8402?threshold=0.1"; HttpWebRequest request =
(HttpWebRequest)HttpWebRequest.Create(url); request.Method = "POST"; Stream stream
= request.GetRequestStream(); stream.Write(img, 0, img.Length); stream.Close();
WebResponse response = request.GetResponse(); StreamReader sr = new StreamReader
(response.GetResponseStream());Console.WriteLine(sr.ReadToEnd()); sr.Close(); response.Close();
C++ 使用示例代码如下,需要安装curl
#include <sys/stat.h> #include <curl/curl.h> #define S_ISREG(m) (((m) & 0170000)
== (0100000)) #define S_ISDIR(m) (((m) & 0170000) == (0040000)) int main(int argc,
char *argv[]) { const char *post_data_filename = "./img.jpg"; FILE *fp = NULL; struct
stat stbuf = { 0, }; fp = fopen(post_data_filename, "rb"); if (!fp) { fprintf(stderr,
"Error: failed to open file \"%s\"\n", post_data_filename); return -1; } if (fstat(fileno(fp),
&stbuf) || !S_ISREG(stbuf.st_mode)) { fprintf(stderr, "Error: unknown file size \"%s\"\n",
post_data_filename); return -1; } CURL *curl; CURLcode res; curl_global_init(CURL_GLOBAL_ALL);
curl = curl_easy_init(); if (curl != NULL) { curl_easy_setopt(curl, CURLOPT_URL, "http://127.
0.0.1:24401?threshold=0.1"); curl_easy_setopt(curl, CURLOPT_POST, 1L); curl_easy_setopt(curl,
CURLOPT_POSTFIELDSIZE_LARGE,(curl_off_t)stbuf.st_size); curl_easy_setopt(curl, CURLOPT_READDATA,
(void *)fp); res = curl_easy_perform(curl); if (res != CURLE_OK) { fprintf(stderr,
"curl_easy_perform() failed: %s\n", curl_easy_strerror(res)); } curl_easy_cleanup(curl);
} curl_global_cleanup(); fclose(fp); return 0; }
请求参数
字段 | 类型 | 取值 | 说明 |
---|---|---|---|
threshold | float | 0 ~ 1 | 置信度阈值 |
HTTP POST Body直接发送图片二进制。
返回参数
字段 | 类型 | 取值 | 说明 |
---|---|---|---|
confidence | float | 0~1 | 分类或检测的置信度 |
label | string | 分类或检测的类别 | |
index | number | 分类或检测的类别 | |
x1, y1 | float | 0~1 | 物体检测,矩形的左上角坐标 (相对长宽的比例值) |
x2, y2 | float | 0~1 | 物体检测,矩形的右下角坐标(相对长宽的比例值) |
关于矩形坐标
x1 * 图片宽度 = 检测框的左上角的横坐标
y1 * 图片高度 = 检测框的左上角的纵坐标
x2 * 图片宽度 = 检测框的右下角的横坐标
y2 * 图片高度 = 检测框的右下角的纵坐标
图像分割
返回结果格式参考API调用文档 代码参考 https://github.com/Baidu-AIP/EasyDL-Segmentation-Demo
声音服务调用说明
Python 使用示例代码如下
import requests with open('./1.mp3', 'rb') as f: audio = f.read() ## params 为GET参数
data 为POST Body result = requests.post('http://127.0.0.1:24401/', params={'threshold': 0.1},
data=audio).json()
C# 使用示例代码如下
FileStream fs = new FileStream("./audio.mp3", FileMode.Open); BinaryReader br = new BinaryReader(fs);
byte[] audio = br.ReadBytes((int)fs.Length); br.Close(); fs.Close(); string url
= "http://127.0.0.1:8402?threshold=0.1"; HttpWebRequest request = (HttpWebRequest)
HttpWebRequest.Create(url); request.Method = "POST"; Stream stream = request.GetRequestStream();
stream.Write(audio, 0, audio.Length); stream.Close(); WebResponse response = request.GetResponse()
; StreamReader sr = new StreamReader(response.GetResponseStream()); Console.WriteLine(sr.ReadToEnd())
; sr.Close(); response.Close();
C++ 使用示例代码如下,需要安装curl
#include <sys/stat.h> #include <curl/curl.h> int main(int argc, char *argv[])
{ const char *post_data_filename = "./audio.mp3"; FILE *fp = NULL; struct stat stbuf
= { 0, }; fp = fopen(post_data_filename, "rb"); if (!fp) { fprintf(stderr, "Error:
failed to open file \"%s\"\n", post_data_filename); return -1; } if (fstat(fileno(fp),
&stbuf) || !S_ISREG(stbuf.st_mode)) { fprintf(stderr, "Error: unknown file size \"%s\"\n",
post_data_filename); return -1; } CURL *curl; CURLcode res; curl_global_init(CURL_GLOBAL_ALL);
curl = curl_easy_init(); if (curl != NULL) { curl_easy_setopt(curl, CURLOPT_URL, "http://127
.0.0.1:24401?threshold=0.1"); curl_easy_setopt(curl, CURLOPT_POST, 1L); curl_easy_setopt(curl,
CURLOPT_POSTFIELDSIZE_LARGE,(curl_off_t)stbuf.st_size); curl_easy_setopt(curl, CURLOPT_READDATA,
(void *)fp); res = curl_easy_perform(curl); if (res != CURLE_OK) { fprintf(stderr,
"curl_easy_perform() failed: %s\n", curl_easy_strerror(res)); } curl_easy_cleanup(curl);
} curl_global_cleanup(); fclose(fp); return 0; }
请求参数
字段 | 类型 | 取值 | 说明 |
---|---|---|---|
threshold | float | 0 ~ 1 | 置信度阈值 |
HTTP POST Body直接发送声音二进制。
返回参数
字段 | 类型 | 取值 | 说明 |
---|---|---|---|
confidence | float | 0~1 | 分类或检测的置信度 |
label | string | 分类或检测的类别 | |
index | number | 分类或检测的类别 |
集成指南
基于HTTP集成
通过EasyEdge.exe启动服务后,参照上面的调用说明,通过HTTP请求集成到自己的服务中
基于c++ dll集成
集成前提
解压开的SDK包中包含src、lib、dll、include四个目录才支持基于c++ dll集成
集成方法
参考src目录中的CMakeLists.txt进行集成
基于c# dll集成
集成前提
解压开的SDK包中包含src\demo_serving_csharp、dll两个目录才支持基于c# dll集成
集成方法
参考src\demo_serving_csharp目录中的CMakeLists.txt进行集成
FAQ
1. 服务启动失败,怎么处理?
请确保相关依赖都安装正确,版本必须如下: .NET Framework 4.5 Visual C++ Redistributable Packages for Visual Studio 2013 * Visual C++ Redistributable Packages for Visual Studio 2015
GPU依赖,版本必须如下: * CUDA 9.0.x + cuDNN 7.6.x 或者 CUDA 10.0.x + cuDNN 7.6.x
GPU加速版(EasyEdge-win-x86-nvidia-gpu-tensorrt)依赖,版本必须如下: CUDA 9.0.x + cuDNN 7.6.x 或者 CUDA 10.0.x + cuDNN 7.6.x TensorRT 7.x 必须和CUDA版本对应
GPU加速版(EasyEdge-win-x86-nvidia-gpu-paddletrt)依赖,版本必须如下: CUDA 11.0.x + cuDNN 8.0.x TensorRT 7.1.3.4 必须和CUDA版本对应
2. 服务调用时返回为空,怎么处理?
调用输入的图片必须是RGB格式,请确认是否有alpha通道。
3. 多个模型怎么同时使用?
SDK设置运行不同的端口,点击运行即可。
4. JAVA、C#等其他语言怎么调用SDK?
参考 https://ai.baidu.com/forum/topic/show/943765
5. 启动失败,缺失DLL?
打开EasyEdge.log,查看日志错误,根据提示处理 缺失DLL,请使用 https://www.dependencywalker.com/ 查看相应模块依赖DLL缺失哪些,请自行下载安装
6. 启动失败,报错NotDecrypted?
Windows下使用,当前用户名不能为中文,否则无法正确加载模型。
7. 启动失败,报错 SerialNum无效
日志显示failed to get/check device id(xxx)或者Device fingerprint mismatch(xxx) 此类情况一般是设备指纹发生了变更,包括(但不局限于)以下可能的情况:
- mac 地址变化
- 磁盘变更
- bios重刷
以及系统相关信息。
遇到这类情况,请确保硬件无变更,如果想更换序列号,请先删除 C:\Users\${用户名}\.baidu\easyedge 目录,再重新激活。
其他问题
如果无法解决,可到论坛发帖: https://ai.baidu.com/forum/topic/list/199 描述使用遇到的问题,我们将及时回复您的问题。