上云无忧 > 文档中心 > 百度智能云全功能AI开发平台BML自定义作业建模 - 训练作业代码示例(TensorFlow 1.13.2)
飞桨BML 全功能AI开发平台
百度智能云全功能AI开发平台BML自定义作业建模 - 训练作业代码示例(TensorFlow 1.13.2)

文档简介:
TensorFlow 基于tensorflow框架的MNIST图像分类任务示例代码,训练数据集点击这里下载 单机训练(计算节点数为1),示例代码如下: import os import tensorflow as tf import numpy as np from tensorflow import keras layers = tf.layers tf.logging.set_verbosity(tf.logging.INFO) def conv_model(feature, target, mode):
*此产品及展示信息均由百度智能云官方提供。免费试用 咨询热线:400-826-7010,为您提供专业的售前咨询,让您快速了解云产品,助您轻松上云! 微信咨询
  免费试用、价格特惠

TensorFlow

基于tensorflow框架的MNIST图像分类任务示例代码,训练数据集点击这里下载

单机训练(计算节点数为1),示例代码如下:

import os import tensorflow as tf import numpy as np from tensorflow import keras
layers = tf.layers
tf.logging.set_verbosity(tf.logging.INFO) def conv_model(feature, target, mode): 
"""2-layer convolution model.""" # Convert the target to a one-hot tensor of 
shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of 
length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape 
feature to 4d tensor with 2nd and 3rd dimensions being # image width and
 height final dimension being the number of color channels. feature 
= tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 
32 features for each 5x5 patch with tf.variable_scope('conv_layer1'):
 h_conv1 = layers.conv2d(feature, 32, kernel_size=[5, 5], activation=tf.nn.relu,
 padding="SAME") h_pool1 = tf.nn.max_pool( h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
 # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2')
: h_conv2 = layers.conv2d(h_pool1, 64, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME") h_pool2
 = tf.nn.max_pool( h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') 
# reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) 
# Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.dense(h_pool2_flat,
 1024, activation=tf.nn.relu), rate=0.5, training=mode == tf.estimator.ModeKeys.TRAIN) 
# Compute logits (1 per class) and compute loss. logits = layers.dense(h_fc1, 10,
 activation=None) loss = tf.losses.softmax_cross_entropy(target, logits) return tf.argmax(logits, 1),
 loss def train_input_generator(x_train, y_train, batch_size=64): assert len(x_train) 
== len(y_train) while True: p = np.random.permutation(len(x_train)) x_train,
 y_train = x_train[p], y_train[p] index = 0 while index <= len(x_train) - 
batch_size: yield x_train[index:index + batch_size], \
               y_train[index:index + batch_size], index += batch_size def main(_):
 work_path = os.getcwd() # Download and load MNIST dataset. (x_train, y_train),
 (x_test, y_test) = \
     keras.datasets.mnist.load_data('%s/train_data/mnist.npz' % work_path) 
# The shape of downloaded data is (-1, 28, 28), hence we need to reshape it
 # into (-1, 784) to feed into our network. Also, need to normalize the 
# features between 0 and 1. x_train = np.reshape(x_train, (-1, 784)) / 255.0 
x_test = np.reshape(x_test, (-1, 784)) / 255.0 # Build model... with tf.name_scope('input'):
 image = tf.placeholder(tf.float32, [None, 784], name='image') label = tf.placeholder(tf.float32,
 [None], name='label') predict, loss = conv_model(image, label, tf.estimator.ModeKeys.TRAIN) opt
 = tf.train.RMSPropOptimizer(0.001) global_step = tf.train.get_or_create_global_step() train_op
 = opt.minimize(loss, global_step=global_step) hooks = [ tf.train.StopAtStepHook(last_step=20000),
 tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss}, every_n_iter=10), ]
 # Horovod: pin GPU to be used to process local rank (one GPU per process) config 
= tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list
 = '0' # Horovod: save checkpoints only on worker 0 to prevent other workers from #
 corrupting them. checkpoint_dir = './checkpoints' training_batch_generator
 = train_input_generator(x_train, y_train, batch_size=100) # The MonitoredTrainingSession 
takes care of session initialization, # restoring from a checkpoint, saving to a
 checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredT
rainingSession(checkpoint_dir=checkpoint_dir, hooks=hooks, config=config) as mon_sess: 
while not mon_sess.should_stop(): # Run a training step synchronously. image_, label_
 = next(training_batch_generator) mon_sess.run(train_op, feed_dict={image: image_, 
label: label_}) checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) saver
 = tf.train.Saver() inputs_classes = tf.saved_model.utils.build_tensor_info(image) 
outputs_classes = tf.saved_model.utils.build_tensor_info(predict) signature = 
(tf.saved_model.signature_def_utils.build_signature_def( inputs={tf.saved_model.
signature_constants.CLASSIFY_INPUTS: inputs_classes}, outputs={tf.saved_model.signature_constants.
CLASSIFY_OUTPUT_CLASSES: outputs_classes}, method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME)) 
os.system("rm -rf ./output") with tf.Session() as sess: sess.run([tf.local_variables_initializer(), 
tf.tables_initializer()]) saver.restore(sess, checkpoint_file) builder = tf.saved_model.builder.
SavedModelBuilder('./output') legacy_init_op = tf.group(tf.tables_initializer(), name=
'legacy_init_op') builder.add_meta_graph_and_variables(sess, [tf.saved_model.
tag_constants.SERVING], signature_def_map={'predict_images': signature}, legacy_init_op=legacy_init_op) 
builder.save() if __name__ == "__main__": tf.app.run()

分布式训练(计算节点数大于1),示例代码如下:

说明:demo分布式程序没有做数据的分片操作,仅供参考

import os import tensorflow as tf import horovod.tensorflow as hvd import numpy as np from tensorflow import keras
layers = tf.layers
tf.logging.set_verbosity(tf.logging.INFO) def conv_model(feature, target, mode): """2-layer convolution model.
""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 
1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) 
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final
 dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) 
# First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'):
 h_conv1 = layers.conv2d(feature, 32, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME") h_pool1 
= tf.nn.max_pool( h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') 
# Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'):
 h_conv2 = layers.conv2d(h_pool1, 64, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME")
 h_pool2 = tf.nn.max_pool( h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') 
# reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.dense(h_pool2_flat,
 1024, activation=tf.nn.relu), rate=0.5, training=mode == tf.estimator.ModeKeys.TRAIN) # Compute 
logits (1 per class) and compute loss. logits = layers.dense(h_fc1, 10, activation=None) loss =
 tf.losses.softmax_cross_entropy(target, logits) return tf.argmax(logits, 1), loss def train_input
_generator(x_train, y_train, batch_size=64): assert len(x_train) == len(y_train) while True: p 
= np.random.permutation(len(x_train)) x_train, y_train = x_train[p], y_train[p] index = 0 while 
index <= len(x_train) - batch_size: yield x_train[index:index + batch_size], \
                  y_train[index:index + batch_size], index += batch_size def main(_):
 # Horovod: initialize Horovod. hvd.init() work_path = os.getcwd() # Download and 
load MNIST dataset. (x_train, y_train), (x_test, y_test) = \
        keras.datasets.mnist.load_data('%s/train_data/mnist.npz' % work_path) # 
The shape of downloaded data is (-1, 28, 28), hence we need to reshape it # 
into (-1, 784) to feed into our network. Also, need to normalize the 
# features between 0 and 1. x_train = np.reshape(x_train, (-1, 784)) / 
255.0 x_test = np.reshape(x_test, (-1, 784)) / 255.0 # Build model...
 with tf.name_scope('input'): image = tf.placeholder(tf.float32, [None, 
784], name='image') label = tf.placeholder(tf.float32, [None], name='label')
 predict, loss = conv_model(image, label, tf.estimator.ModeKeys.TRAIN) serve_graph_file =
 "./serve_graph.meta" tf.train.export_meta_graph(serve_graph_file, as_text=True) 
# Horovod: adjust learning rate based on number of GPUs. opt = 
tf.train.RMSPropOptimizer(0.001 * hvd.size()) # Horovod: add Horovod Distributed Optimizer. 
opt = hvd.DistributedOptimizer(opt) global_step = tf.train.get_or_create_global_step() train_op
 = opt.minimize(loss, global_step=global_step) hooks = [ # Horovod: BroadcastGlobalVariablesHook 
broadcasts initial variable states # from rank 0 to all other processes. This is necessary
 to ensure consistent # initialization of all workers when training is started with
 random weights # or restored from a checkpoint. hvd.BroadcastGlobalVariablesHook(0),
 # Horovod: adjust number of steps based on number of GPUs. tf.train.StopAtStepHook
(last_step=10000 // hvd.size()), tf.train.LoggingTensorHook(tensors={'step': global_step,
 'loss': loss}, every_n_iter=10), ] # Horovod: pin GPU to be used to process local rank 
(one GPU per process) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.
gpu_options.visible_device_list = str(hvd.local_rank()) # Horovod: save checkpoints only on 
worker 0 to prevent other workers from # corrupting them. checkpoint_dir = './checkpoints
' if hvd.rank() == 0 else None training_batch_generator = train_input_generator(x_train, 
y_train, batch_size=100) # The MonitoredTrainingSession takes care of session initialization,
 # restoring from a checkpoint, saving to a checkpoint, and closing when done 
# or an error occurs. with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir, 
hooks=hooks, config=config) as mon_sess: while not mon_sess.should_stop():
 # Run a training step synchronously. image_, label_ = next(training_batch_generator)
mon_sess.run(train_op, feed_dict={image: image_, label: label_}) if hvd.rank() 
!= 0: return checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) 
tf.reset_default_graph() saver = tf.train.import_meta_graph(serve_graph_file) inputs_classes 
= tf.saved_model.utils.build_tensor_info(image) outputs_classes = tf.saved_model.utils.build_tensor_info(predict)
 signature = (tf.saved_model.signature_def_utils.build_signature_def
( inputs={tf.saved_model.signature_constants.CLASSIFY_INPUTS: inputs_classes},
 outputs={tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES: outputs_classes},
 method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME)) os.system
("rm -rf ./output") with tf.Session() as sess: sess.run([tf.local_variables_initializer(),
 tf.tables_initializer()]) saver.restore(sess, checkpoint_file) builder = tf.saved_model.builder.
SavedModelBuilder('./output') legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') 
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING], signature_def_map=
{'predict_images': signature}, legacy_init_op=legacy_init_op) builder.save() if __name__ == "__main__": tf.app.run()

相似文档
官方微信
联系客服
400-826-7010
7x24小时客服热线
分享
  • QQ好友
  • QQ空间
  • 微信
  • 微博
返回顶部