上云无忧 > 文档中心 > 百度智能云全功能AI开发平台BML开发表格预测模型-配置AUTOML模式表格数据预测任务
飞桨BML 全功能AI开发平台
百度智能云全功能AI开发平台BML开发表格预测模型-配置AUTOML模式表格数据预测任务

文档简介:
表格预测任务支持AutoML和专家两种运行方式: AutoML模式:全流程自动建模,用户只需设置数据集、目标列以及制定任务类型即可,而无需关注数据处理以及算法配置等过程,系统会自动完成建模过程,并从中挑选最优的模型作为训练任务的运行结果。
*此产品及展示信息均由百度智能云官方提供。免费试用 咨询热线:400-826-7010,为您提供专业的售前咨询,让您快速了解云产品,助您轻松上云! 微信咨询
  免费试用、价格特惠

表格预测任务支持AutoML和专家两种运行方式:

  • AutoML模式:全流程自动建模,用户只需设置数据集、目标列以及制定任务类型即可,而无需关注数据处理以及算法配置等过程,系统会自动完成建模过程,并从中挑选最优的模型作为训练任务的运行结果。
  • 专家模式:高度开放的建模方式,用户可以进行特征工程、算法、超参搜索等配置,具备相关技能的开发者可以在方式下获得更多的开发自由度。

创建AutoML建模任务

操作场景

以iris数据集为例,创建多分类模型,iris数据集示例如下:

sepal_length,sepal_width,petal_length,petal_width,species

5.1,3.5,1.4,0.2,setosa

4.9,3.0,1.4,0.2,setosa

4.7,3.2,1.3,0.2,setosa

4.6,3.1,1.5,0.2,setosa

前提条件

在创建表格预测任务前,需满足如下条件:

  • 必须已成功创建“表格”类数据,数据集导入状态为“已完成”
  • 数据集中行数必须大于0,即必须是非空数据集

操作步骤

  1. 在BML操作台的左侧导航菜单上单击“脚本调参”,进入脚本调参列表页面。
  2. 单击已创建的“iris分类”所在行的“新建任务”,进入“新建任务”页面。

    配置参数如下所示:

    • 基本信息

      • 开发方式:选择AutoML模式
      • 任务备注:请根据实际情况填写
    • 添加数据

      • 选择数据集:选择已创建的iris数据集
      • 选择目标列:设置为species
      • 算法类型:可以设置为“自动”或“多分类”
    • 发布模型

      • 自动发布-开:即完成训练后,系统会自动将当前任务得到的模型发布到模型仓库中
      • 自动发布-关:完成训练后,用户可以根据模型精度等再决定是否将模型发布到模型仓库
    • 配置资源

      • 运行环境:请根据数据量以及期望的运行速度进行设置。根据经验值,在建模过程中,数据会在内存中膨胀为原始大小的10倍,为保证任务顺利完成,请尽量确保配置的资源的内存不小于原始数据集的10倍。
      • 选择节点数:如果设置为1,则系统以单机算法进行建模,如果设置为大于1的值,则系统将使用分布式算法。单机算法比分布式算法更丰富。在单机资源满足要求的情况下,可优先使用单节点进行建模。
      • 最长训练时间:该时长指算法求解阶段的最长时长,若超过该时长,算法仍未得到结果,系统会强制结束训练任务。

    配置示例如下所示:

    • 基本信息部分:


    • 添加数据部分:


  3. 单击“提交训练任务”,开始执行模型训练。

    提交任务后可以在任务列表中查看任务的执行状态。

相似文档
  • 表格预测任务支持AutoML和专家两种运行方式: 专家模式:高度开放的建模方式,用户可以进行特征工程、算法、超参搜索等配置,具备相关技能的开发者可以在方式下获得更多的开发自由度。
  • 在脚本调参任务训练完成后,可以查看任务结果。 在BML左侧导航栏中单击“脚本调参”,进入脚本调参列表页面。 在脚本调参表单中单击“任务列表”,可以进入其任务列表页面,如下所示: 在任务列表中,单击评估报告,可以查看该任务生成的模型的报告信息,如下所示:
  • 文字识别模型类型: 文字识别模型即是常说的OCR模型,预置模型调参目前提供了通用的全文本识别场景,可以应对常规的文字识别任务,且支持多种文字。 文字识别模型应用场景: 纸质文档电子化: 通用文字识别模型支持针对多语种的纸质文档进行电子化,开发者可以采集文档图片并标注,对模型进行训练,从而实现纸质文档的自动电子化,提升工作效率。
  • 文字识别任务操作流程 第一步:点击进入文字识别模型页面 第二步:点击创建 第三步:填写项目基本信息 第四步:点击新建任务 第五步:完善任务信息 第六步:配置资源并提交训练
  • 可视化建模通过拖拉拽和拼接组件的方式,形成建模流程。用户配置组件参数后,即可训练模型。 平台提供可视化的实验开发环境,开发人员和业务人员根据场景和业务需求能够在交互式画布上直观地连接数据处理、特征工程,算法,模型预测和模型评估等组件,基于无代码方式实现人工智能模型开发。可视化建模在降低模型开发门槛的同时提升了建模的效率。
官方微信
联系客服
400-826-7010
7x24小时客服热线
分享
  • QQ好友
  • QQ空间
  • 微信
  • 微博
返回顶部